Edge AI Needs Constraint-Aware Storage
Edge AI workloads demand low-latency, privacy-compliant storage. CATER delivers, using policy-driven placement to optimize energy,…
Edge AI workloads demand low-latency, privacy-compliant storage. CATER delivers, using policy-driven placement to optimize energy,…
Combining LSTM for QoS prediction and LOF for anomaly detection, our predictive retraining adapts to…
Static retraining fails in dynamic 6G networks. Our predictive approach uses LOF and LSTM to…
Apache Ozone excels at scalable storage—but lacks constraint-aware placement. CATER fills the gap, integrating seamlessly…